Matrix modeling of inverse dynamics of spatial and planar parallel robots

نویسندگان

  • Stefan Staicu
  • S. Staicu
چکیده

Recursive matrix relations for kinematics and dynamics analysis of two known parallel mechanisms: the spatial 3-PRS and the planar 3-RRR are established in this paper. Knowing the motion of the platform, we develop first the inverse kinematical problem and determine the positions, velocities, and accelerations of the robot’s elements. Further, the inverse dynamic problem is solved using an approach based on the principle of virtual work, and the results can be verified in the framework of the Lagrange equations with their multipliers. Finally, compact matrix equations and graphs of simulation for power requirement comparison of each of three actuators in two different actuation schemes are obtained. For the same evolution of the moving platform, the power distribution upon the three actuators depends on the actuating configuration, but the total power absorbed by the set of three actuators is the same, at any instant, for both driving systems. The study of the dynamics of the parallel mechanisms is done mainly to solve successfully the control of the motion of such robotic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Kinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object

The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...

متن کامل

Kinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object

The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012